ИНДИЯ: НАСЕЛЕНИЕ - А ДЕМОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА - определение. Что такое ИНДИЯ: НАСЕЛЕНИЕ - А ДЕМОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое ИНДИЯ: НАСЕЛЕНИЕ - А ДЕМОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА - определение

Характеристика поля; Характеристика кольца

Характеристика (алгебра)         
Характеристика — числовая величина, используемая в общей алгебре для описания некоторых свойств колец или полей.
Арсенид индия         
ХИМИЧЕСКОЕ СОЕДИНЕНИЕ
InAs; Индия арсенид; Моноарсенид индия
Арсени́д и́ндия, — бинарное неорганическое соединение индия и мышьяка. Химическая формула соединения InAs.
Фосфид индия         
ХИМИЧЕСКОЕ СОЕДИНЕНИЕ
InP; Индия фосфид; Фосфид индия(III)
Фосфид индия (InP) — химическое соединение индия и фосфора. Важный прямозонный полупроводник с шириной запрещенной зоны 1.

Википедия

Характеристика (алгебра)

Характеристика — числовая величина, используемая в общей алгебре для описания некоторых свойств колец или полей.

Для кольца R {\displaystyle R} характеристикой c h a r R {\displaystyle \mathop {\mathrm {char} } R} называется наименьшее целое n > 0 {\displaystyle n>0} такое, что для каждого элемента r R {\displaystyle r\in R} выполняется равенство:

n r = r + + r n = 0 {\displaystyle n\cdot r=\underbrace {r+\cdots +r} _{n}=0} ,

а если такого числа не существует, то предполагается c h a r R = 0 {\displaystyle \mathop {\mathrm {char} } R=0} .

При наличии единицы в кольце R {\displaystyle R} характеристика может быть определена как наименьшее ненулевое натуральное число n {\displaystyle n} такое, что n 1 = 0 {\displaystyle n\cdot 1=0} , если же такого n {\displaystyle n} не существует, то характеристика равна нулю.

Характеристики кольца целых чисел Z {\displaystyle \mathbb {Z} } , поля рациональных чисел Q {\displaystyle \mathbb {Q} } , поля вещественных чисел R {\displaystyle \mathbb {R} } , поля комплексных чисел C {\displaystyle \mathbb {C} } равны нулю. Характеристика кольца вычетов Z / n Z {\displaystyle \mathbb {Z} /n\mathbb {Z} } равна n {\displaystyle n} . Характеристика конечного поля F p m {\displaystyle \mathbb {F} _{p^{m}}} , где p {\displaystyle p}  — простое число, m {\displaystyle m}  — положительное целое, равна p {\displaystyle p} .

Тривиальное кольцо с единственным элементом 0 = 1 {\displaystyle 0=1}  — единственное кольцо с характеристикой 1 {\displaystyle 1} .

Если нетривиальное кольцо с единицей и без делителей нуля имеет положительную характеристику n {\displaystyle n} , то она является простым числом. Следовательно, характеристика любого поля K {\displaystyle K} есть либо 0 {\displaystyle 0} , либо простое число p {\displaystyle p} . В первом случае поле K {\displaystyle K} содержит в качестве подполя поле, изоморфное полю рациональных чисел Q {\displaystyle \mathbb {Q} } , во втором случае поле K {\displaystyle K} содержит в качестве подполя поле, изоморфное полю вычетов F p {\displaystyle \mathbb {F} _{p}} . В обоих случаях это подполе называется простым полем (содержащимся в K {\displaystyle K} ).

Характеристика конечного поля всегда положительна, однако из того, что характеристика поля положительна, не следует, что поле конечно. В качестве контрпримеров можно привести поле рациональных функций с коэффициентами в F p {\displaystyle \mathbb {F} _{p}} и алгебраическое замыкание поля F p {\displaystyle \mathbb {F} _{p}} .

Если R {\displaystyle R}  — коммутативное кольцо простой характеристики p {\displaystyle p} , то ( a + b ) p n = a p n + b p n {\displaystyle (a+b)^{p^{n}}=a^{p^{n}}+b^{p^{n}}} для всех a , b R {\displaystyle a,b\in R} , n N {\displaystyle n\in \mathbb {N} } . Для таких колец можно определить эндоморфизм Фробениуса.

Что такое Характеристика (алгебра) - определение